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Abstract. General expressions, including the lepton mass, for the spin-averaged differential cross-section
for the annihilation reaction lepton-antilepton to proton-antiproton are given, as well as general formulae
for the single- and double-spin asymmetries in the centre-of-mass frame. In particular, we discuss the
single-spin asymmetry, normal to the scattering plane, which measures the relative phase difference between
nucleon electromagnetic form factors GE and GM . Recent experimental investigations of these form factors
in the space- and time-like region are reviewed. It is thought that measurements of the phase of these form
factors will provide fundamental information on the internal nucleon structure. The phases between GE

and GM are accessible through polarisation observables measured in the antiproton-proton–to–lepton-
antilepton reaction, or in its time-reversed process.

PACS. 13.40.Gp Electromagnetic form factors – 13.75.Cs Nucleon-nucleon interactions (including antin-
ucleons, deuterons, etc.) – 13.66.Bc Hadron production in e−e+ interactions – 14.20.Dh Protons and
neutrons

1 Introduction

The form factors of hadrons as measured both in the
space-like and time-like domains provide fundamental in-
formation on their structure and internal dynamics. As is
well known, experiments on the scattering of high-energy
electrons by protons make it possible to determine the
proton form factors in the region of space-like momentum
transfer (q2 < 0). Information on the time-like form fac-
tors is accessible through annihilation reactions such as
p̄ p → l+ l−, where lepton, l, refers to the electron, muon
or tau lepton.

At present there is great theoretical interest in the nu-
cleon time-like form factors due to recent experiments that
have raised serious issues. Experimental values for the pro-
ton have been obtained over the last 50 years via electron
proton scattering, often using the Rosenbluth separation
technique [1]. The magnetic proton form factor, which is
the dominant term in elastic ep scattering, has been mea-
sured at q2 values up to 31GeV2 in the space-like region [2]
and from p̄ p or e−e+ annihilation up to q2 = 5.6GeV2 [3].
They show that the magnetic form factor, GM , follows ap-
proximately a dipole form GD = [1 + q2/0.71 (GeV2)]−2,
where q2 is the four-momentum transfer squared.

Recent measurements [4, 5] of the electron-to-proton
polarisation transfer in e− p → e− p scattering at Jeffer-
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son Laboratory show that the ratio of Sachs form factors
GE(q

2)/GM (q2) is monotonically decreasing with increas-
ing q2 in strong contradiction with the GE/GM scaling as-
sumed in the Rosenbluth separation method. Recall that
in the expression of the differential cross-section for the
unpolarised elastic scattering of electrons on protons the
coefficient −q2/4M2 in front of G2

M inhibits the contri-
bution of G2

E to dσ/dΩ with increasing q2. It is this fact
which has led some to conjecture that data on GE in the
space-like region extracted by the Rosenbluth technique
may be unreliable and should be ignored in the global
analysis [6]. The Rosenbluth method may also be consid-
ered incomplete in the space-like region because of its sen-
sitivity to uncertain radiative corrections, including two-
photon exchange effects [7].

Unexpected results have been observed in the measure-
ments of the proton form factors in the time-like region
also: the Fermilab E835 [3] measurements of |GM | of the
proton at q2 = 11.63 and 12.43GeV2 have shown that
|GM | in the time-like region is twice as large as in the
space-like region. Although the space-like form factors of
a stable hadron are real, the time-like form factors have a
phase reflecting the final-state interaction of the outgoing
hadrons in a reaction such as e+ e− → p p̄. Kaidalov et al.

suggest that it is these final-state interactions which are
responsible for the enhancement of |GM | in the time-like
region [8].
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It is as a result of these experiments that a precise
separation of form factors and polarisation measurements
is planned [9] at the future antiproton facility at GSI.
The Polarised Antiproton eXperiment (PAX) Collabora-
tion plans to produce polarised antiprotons by spin filter-
ing with an internal polarised gas target. The origin of the
unexpected q2-dependence of the ratio GE/GM of the pro-
ton, as observed at Jefferson laboratory, can be clarified
by a measurement of their relative phase in the time-like
region, which discriminates strongly between the models
for the form factor. As has been suggested in ref. [10] this
phase can be measured via single-spin asymmetry in the
annihilation p p̄→e− e+ on a transversely polarised target.

The proposed measurement of this phase at PAX will
also contribute to the understanding of the onset of the
pQCD asymptotics in the time-like region and will serve
as a stringent test of dispersion theory approaches to the
relationship between the space-like and time-like form fac-
tors. The double-spin asymmetry will limit the relative
phase ambiguity and allow independent GE-GM separa-
tion, serving as a check on the Rosenbluth separation in
the time-like region. Despite the fundamental implications
of the phase for the understanding of the connection be-
tween the space-like and time-like factors, such measure-
ments have yet to be accurately obtained.

In general, the Dirac and Pauli form factors, F1 and
F2, are analytic functions of q2. They take real values in
the space-like region q2 < 0 due to the hermiticity of the
electromagnetic Hamiltonian. In the time-like region the
form factors are complex on the real q2-axis above thresh-
old due to the unitarity of the S-matrix and the time
reversal invariance of the theory. The analytic structure
and phases of the form factors in the time-like regime
are thus connected by dispersion relations to the space-
like regime [11–13]. These dispersion relations allow for a
coherent description of the nucleon electromagnetic form
factors over a large range of momentum transfer. The mea-
surement of form factors is particularly important at high
momentum transfer as it serves to test the predictions of
perturbative QCD. The electric and magnetic form fac-
tors GE and GM are defined in the next section in terms
of the Dirac and Pauli form factors, F1 and F2.

This paper is organised as follows: in sect. 2 we dis-
cuss the proton-antiproton current in the time-like region,
given as a function of the electromagnetic form factors. We
give the expression for the spin-averaged differential cross-
section, including the lepton mass and show it reduces to
the previously published result [14] in which this mass has
been neglected. In sect. 3 we present the centre-of-mass
variables, derived by simple kinematics, which are used
throughout this paper. In sect. 4 we introduce a scaled
spin-averaged differential cross-section which will be used
in the general expressions that follow. In sects. 5 and 6 we
give expressions for the single- and double-spin polarisa-
tion observables, in the process p̄ p→ l− l+, including the
lepton mass. It is shown that each polarisation expression
reduces to previously published results when the lepton
mass is neglected.

γ(q)

l−(K)

l+(K′)

p̄(P ′)

p(P )

Fig. 1. One-photon exchange for l+ + l− → p + p̄ in the s

channel.

2 Unpolarised cross-section

The differential cross-section for proton-antiproton anni-
hilation leading to a lepton-antilepton pair involves oper-
ators describing the proton and lepton currents, Jµ and
jµ, respectively,

i e2 〈v̄K′ | jµ |uK〉
1

q2
〈ūP | Jµ |vP ′〉 , (2.1)

where s = q2 = qµq
µ is the square of the invariant 4-

momentum in the s channel. Here, we adopt the metric
q2 = q2

0 − q2 so that q2 is positive in the time-like region.
This is given in terms of the final proton and antiproton
momenta by

qν = P ν + P ′ ν . (2.2)

If we assume the lepton has no structure, we can replace
jµ by −i e γµ. We shall look at the time-reversed process
l− l+ → p p̄, as in fig. 1 Using Lorentz and gauge invari-
ance, the invariant amplitude due to one-photon exchange
is

M = i e2 v̄(K ′) γµ u(K)
1

s
ū(P )

×
[

γµ F1(s) +
i

2M
σµν qν F2(s)

]

v(P ′), (2.3)

where M is the mass of the proton and σµν = 1
2
i[γµ, γν ].

The momenta of the incoming lepton and antilepton are
Kµ and K ′ µ, respectively, and P ν and P ′ ν are the mo-
menta of the outgoing proton and antiproton. These are
given in the centre-of-mass frame in the next section.

The Dirac and Pauli form factors, F1 and F2, are func-
tions of q2 and normalised at the origin such that F1(0) =
1 and F2(0) = µp − 1, where µp is the magnetic moment
of the proton. Using Gordon decomposition this becomes

M = i e2 v̄(K ′) γµ u(K)
1

s
ū(P )

×
[

γµ GM (s) +
1

2M
(P ′ − P )µF2(s)

]

v(P ′) .

The Sachs electric and magnetic form factors are given
by [15]

GE(s) = F1(s) +
s

4M2
F2(s), (2.4)

GM (s) = F1(s) + F2(s) . (2.5)
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By definition these form factors are equal at threshold
(s = 4M2). In the Breit frame, GE and GM may be
interpreted as the Fourier transforms of the charge and
magnetisation distributions, respectively. We note here
that while for the t channel scattering (q2 < 0) GE(q

2)
and GM (q2) are real on the negative real q2-axis, the
form factors can take complex values for q2 > 4m2

π

corresponding to the annihilation reaction, where mπ is
the mass of the pion [16].

The unpolarised differential cross-section for s chan-
nel annihilation of spin half-particles in the centre-of-mass
system is

dσ

dΩ
=

β

64π2s

1

4

∑

spin

|M|2, (2.6)

whereM is the invariant amplitude for the process and β
is a flux factor. In an annihilation reaction of two spinor
particles of mass mi producing a pair of mass mf the flux
factor β is given by

β =

(

s− 4m2
f

s− 4m2
i

)1/2

. (2.7)

In this case where all the particles are unpolarised it is
necessary to sum over the polarisation of the final particles
and average over the initial polarisations of the particles.
The spin-averaged differential cross-section for l+ + l− →
p+ p scattering in terms of Mandelstam variables s and t
is

dσ

dΩ
=α2 β

1

s3(s− 4M2)

{

s2

2

(

s− 4M2
)

|GM |2

−4sm2M2
(

|GM |2−|GE |2
)

+
[

(

t−m2−M2
)2
+st

]

×
(

s |GM |2 − 4M2|GE |2
)

}

, (2.8)

where m is the mass of the lepton and t = (P −K)2. The

flux factor β =
√
s− 4M2/

√
s− 4m2. We can simplify

this expression by neglecting the mass of the lepton. In
both cases it transpires that if polarisations are not mea-
sured the terms corresponding to GE and GM contribute
separately to the cross-section:

dσ

dΩ
=

α2

4

β

s

{

(1+cos2 θ)|GM |2+
1

τ
sin2 θ|GE |2

}

, (2.9)

where θ is the centre-of-mass scattering angle, given in
eq. (3.4) for nonzero lepton mass. This formula was first
obtained in ref. [14]. The absolute values of the form fac-
tors can be determined by a Rosenbluth separation tech-
nique. Measurements are made at a number of angles θ,
and at a fixed value of the total energy q2.

The total angular momentum for one-photon exchange
in l+ + l− → p + p̄ is J = 1. If we consider C and P
invariances there are two allowed states for the l− l+ (p p̄):
S = 1, L = 0 and S = 1, L = 2, where S is the total spin
and L is the orbital angular momentum. As a consequence,
the θ-dependence of the spin-averaged cross-section is [17]

dσ

dΩ
' a(s) + b(s) cos2 θ, (2.10)

where a(s) and b(s) are quadratic functions of GE(s) and
GM (s). This result agrees with the spin-averaged differ-
ential cross-section in (2.9).

3 Centre-of-mass variables

The equations connecting the invariant Mandelstam vari-
ables with the practical ones of energy and angle can
be derived by simple kinematics and are given below for
p̄ p → l+ l− in the centre-of-mass system [18]. The four-
momentum of the proton and antiproton is specified by the
centre-of-mass energy E = 1

2

√
s and a three-momentum,

p, of magnitude p. The energy of each lepton is E also. In
the following equations s, t and u are Mandelstam vari-
ables with u = 2m2 + 2M2 − s− t:

Pµ = (E, 0, 0, p), (3.1)

P ′ µ = (E, 0, 0, −p), (3.2)

cos θ =
t− u√

s− 4m2
√
s− 4M2

, (3.3)

sin θ =
2
[

4m2 M2 − (t−m2 −M2)2 − s t
]1/2

√
s− 4m2

√
s− 4M2

. (3.4)

In the calculations that follow there are three polarisation
orientations. These correspond to polarisation in three di-
rections which are called longitudinal, in the scattering
plane and normal, but often denoted z, x and y, respec-
tively. In the scattering plane (x) is perpendicular to the
direction of the outgoing baryon. Longitudinal (z) means
parallel to the direction of the outgoing baryon. Normal
(y) refers to normal to the scattering plane in the direc-
tion of p × k, where k is the lepton momentum and p is
the proton momentum, with x, y and z forming a right-
handed coordinate system. The general formula for the
spin polarisation four-vector Sµ is

Sµ =
2

M

(

p · s, Ms +
p · s

E +M
p

)

, (3.5)

where Pµ = (E,p), PµPµ = M2, SµPµ = 0 and s 2 = 1/4
for a spinor particle. The three polarisation four-vectors
in the x, y and z directions are

Sµ
x = (0, 1, 0, 0),

Sµ
y = (0, 0, 1, 0),

Sµ
z = (p, 0, 0, E)/M.

These spin four-vectors are normalised such that SµSµ =
−1.

4 Asymmetries with lepton mass

We shall retain the lepton mass for the reaction l+ l− →
p p̄ and derive the general expressions for the single- and
double-spin observables. It will be convenient to define a
scaled unpolarised cross-section given below in terms of s, t:

dσ

dΩ
=

α2

4

β

s
D, (4.1)
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where D is given by

D =
2

(s/4M2 − 1)s2

{

2
[

(

t−m2 −M2
)2

+ s t
]

×
( s

4M2
|GM |2 − |GE |2

)

+ s2
( s

4M2
−1
)

|GM |2

−2 sm2
(

|GM |2 − |GE |2
)

}

. (4.2)

We can also express D in terms of the centre-of-mass scat-
tering angle, θ, and reduce it to the following:

D =

(

1− 4m2

s

)

sin2 θ

[

4M2

s
|GE |2 − |GM |2

]

+2

[

4m2 M2

s2
|GE |2 + |GM |2

]

. (4.3)

This general result for the spin-averaged cross-sections
above reduces to eq. (2.9) when the lepton mass m→ 0.

It has been noted in [19] that it is possible to define an
angular asymmetry, R, which can be measured from the
differential cross-section at θ = π/2. This measurement
does not require polarised particles and R is defined in
terms of the form factors as

R =
s|GM |2 − 4M2|GE |2
s|GM |2 + 4M2|GE |2

. (4.4)

In some cases it may be more convenient to use the
invariant cross-section dσ/dt instead of the noncovariant
cross-section, dσ/dΩ, given above. One cross-section may
be obtained from the other using the following equation
in the centre-of-mass system:

dσ

dΩ
=

√
s− 4m2

√
s− 4M2

4π

dσ

dt
. (4.5)

5 Single-spin asymmetry

In order to determine the relative phase of the form factors
it is necessary to perform experiments with polarised pro-
tons or antiprotons. When the antiproton in l+ l− → p p̄ is
polarised, the differential cross-section can be calculated
using the following squared invariant amplitude:

∑

spin

|M|2= e4

s2
Tr (½½K +m) γµ

(

½½K
′ −m

)

γν

×Tr
(

¡P +M
)

[γνGM +XνF2]

×
(

½½P ′−M
) (

1+γ5¶S
)

[γµG∗
M+XµF ∗

2 ] , (5.1)

where Xν = (P ′ − P )ν/2M and the outgoing antiproton
has polarisation vector Sµ. We find, in addition to the
differential cross-section eq. (2.8), the following term. If
the initial leptons are unpolarised, we obtain one nonzero
single-spin asymmetry using the polarisation vector Sy =

(0, 0, 1, 0):

α2

16

β

s3

×2
(

εαβγδK
′ αP ′ β+εαβγδP

′ αKβ
)

P γSδ
(

u−t
)

ImGE G∗
M

M
(

τ−1
) ,

(5.2)

where τ = s/4M2. We can then evaluate the asymme-
try parameter Ay, defined as a measure of the left-right
asymmetry by

Ay =
(dσ/dΩ)↑ − (dσ/dΩ)↓
(dσ/dΩ)↑ + (dσ/dΩ)↓

, (5.3)

where the subscripts ↑ and ↓ refer to the direction of the
spin four-vector Sµ in the y-direction. We then obtain
the general (m 6= 0) single-spin asymmetry for either a
polarised proton or antiproton:

Ay =

(

1− 4m2

s

)

2M sin 2θ√
sD

ImG∗
EGM , (5.4)

where θ is the centre-of-mass scattering angle, which is a
function of the lepton mass from eq. (3.4). The predicted
single-spin asymmetry is substantial and has a distinct
q2-dependence which strongly discriminates between the
analytic forms which fit the proton GE/GM data in the
space-like region. As emphasised already by Dubnickova
et al. [14], the knowledge of the phase difference between
the GE and GM may strongly constrain models for the
form factors.

The existence of the T -odd single-spin asymmetry nor-
mal to the scattering plane in the proton-antiproton pair
production requires a nonzero phase difference between
the GE and GM form factors [20]. This observable is zero
in the space-like case. The complex phases of the form
factors in the time-like region make it possible for a single
outgoing baryon to be polarised, even without polarisa-
tion in the initial state. By measuring the polarisation of
one of the produced baryons it is possible to determine the
phase of the ratio of form factors GE/GM in the time-like
region. As noted in [21] the factor sin 2θ in Ay causes this
observable to vanish at θ = π/2. Since the leptons in the
initial state are unpolarised, at θ = π/2 it is not possible
to uniquely define the normal to the lepton-hadron plane;
thus one cannot obtain a nonzero normal polarisation ob-
servable.

The other single-spin observables Ax and Az are
nonzero only when the initial lepton is polarised. If the
colliding leptons are longitudinally polarised there will be
a contribution to the polarisation of the baryon produced.
The observables Ax and Az depend on the real phase of
the form factors and the magnitude squared of GM , re-
spectively. Expressions for these two observables neglect-
ing the lepton mass are available in ref. [14]. As we did
in sect. 2 for the unpolarised cross-section, we can sim-
plify eq. (5.4) for Ay by neglecting the lepton mass to
obtain the following expression. This is in agreement with
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refs. [14, 19,22]:

Ay =
sin 2θ ImG∗

EGM
{

(1 + cos2 θ)|GM |2 + 1
τ sin2 θ|GE |2

}√
τ

=
(τ − 1) sin 2θ ImF1F

∗
2

{

(1 + cos2 θ)|GM |2 + 1
τ sin2 θ GE |2

}√
τ
. (5.5)

6 Double-spin asymmetries

If we now consider both the outgoing proton and antipro-
ton as polarised, as in fig. 2, with polarisation vectors Sµ

1

and Sµ
2 , respectively, we arrive at the following full ex-

pressions for the double-spin observables Axx, Ayy and
Azz including lepton mass:

Axx=N

{

[

(

t−m2−M2
)2
+s t

]

(

s|GM |2−4M2|GE |2
)

+
1

2
s(s−4M2)

(

s−4m2
)

sin2 θ|GM |2

−4 sm2 M2
(

|GM |2−|GE |2
)

}

, (6.1)

Ayy=N

{

[

(

t−m2−M2
)2
+s t

]

(

s|GM |2−4M2|GE |2
)

−4 sm2 M2
(

|GM |2−|GE |2
)

}

, (6.2)

Azz=N

{

[

(

t−m2−M2
)2
+s t

]

(

s|GM |2+4M2|GE |2
)

+
1

2
s2(s−4M2)|GM |2+4 sm2M2

(

|GM |2−|GE |2
)

}

,

(6.3)

where the coefficient N is given by

N =
4

s2(s− 4M2)D
(6.4)

and D is given in eq. (4.2). We can write this out explicitly
as

N=

{

[

(

t−m2−M2
)2
+s t

]

(

s|GM |2−4M2|GE |2
)

+
s2

2

(

s−4M2
)

|GM |2−4 sm2M2
(

|GM |2−|GE |2
)

}−1

.

(6.5)

In these three equations there are many common factors
with the unpolarised cross-section as represented by D.

γ(q)

u(K)

v̄(K ′)

v(P ′, S2)

ū(P, S1)

Fig. 2. Production of polarised protons and antiprotons in the
s channel.

These equations can be simplified to the following:

D(1−Axx)=2|GM |2−2

(

1− 4m2

s

)

sin2 θ|GM |2 , (6.6)

D(1−Ayy)=2|GM |2 , (6.7)

D(1−Azz)=
8

(1−s/4M2)s2

{

[

(

t−m2−M2
)2
+s t

]

|GE |2

+sm2
(

|GM |2 − |GE |2
)

}

. (6.8)

The last two double-spin observables areAxz andAzy. The
expression for Axz is given in terms of invariant Mandel-
stam variables as

Axz =
2M

[

4m2 M2 − (t−m2 −M2)2 − s t
]1/2

(t− u)

s5/2(s− 4M2)D

×ReG∗
EGM . (6.9)

We can simplify this expression greatly by using the
centre-of-mass scattering angle. We find that Axz can be
expressed as

Axz =
2M√
sD

(

1− 4m2

s

)

sin 2θReG∗
EGM (6.10)

and similarly the general expression for Azy is

Azy =
2M√
sD

(

1− 4m2

s

)

sin 2θ ImG∗
EGM . (6.11)

The double-spin asymmetry Axy is zero in the one-photon
exchange approximation although this is not true in gen-
eral. For example, when considering the two-photon con-
tribution mechanism this spin observable is nonzero [7].

All of the above formulae (6.1)–(6.11) reduce to previ-
ously published expressions [7] for double-spin observables
when we let the lepton mass m→ 0. In the equations that
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follow τ = s/4M2:

Axy = 0, (6.12)

Axz =
τ−1/2 sin 2θReGEG∗

M

(1 + cos2 θ)|GM |2 + 1
τ sin2 θ|GE |2

, (6.13)

Azy =
−τ−1/2 sin 2θ ImGEG∗

M

(1 + cos2 θ)|GM |2 + 1
τ sin2 θ|GE |2

, (6.14)

Axx =
sin2 θ

(

τ−1|GE |2 + |GM |2
)

(1 + cos2 θ)|GM |2 + 1
τ sin2 θ|GE |2

, (6.15)

Ayy =
sin2 θ

(

τ−1|GE |2 − |GM |2
)

(1 + cos2 θ)|GM |2 + 1
τ sin2 θ|GE |2

, (6.16)

Azz =
(1 + cos2 θ)|GM |2 − τ−1 sin2 θ|GE |2
(1 + cos2 θ)|GM |2 + 1

τ sin2 θ|GE |2
. (6.17)

As can be seen in the equations above, polarisation observ-
ables can be used to pin down the relative phases of the
time-like form factors. All of the double-spin observables
depend on the moduli squared of the form factors apart
from Axz and Azy which contain the real and imaginary
parts, respectively.

7 Conclusions

The understanding of the electromagnetic structure of the
nucleon, as revealed in proton-antiproton reactions, is of
upmost importance in any theory or model of strong inter-
actions. Abundant data over a large range of momentum
transfer already exist and we have provided an overview
of the rôle of the lepton mass in a study of the nucleon
electromagnetic form factors in the time-like region.

General expressions, including the lepton mass, for the
spin-averaged cross-section as well as single- and double-
spin asymmetries have been presented here. For the an-
nihilation reaction p̄ p → l−l+ we simply invert the flux
factor β in eq. (2.8) to obtain the unpolarised differential
cross-section:

dσ

dΩ
=

α2

β

1

s3 (s− 4M2)

{

s2

2

(

s− 4M2
)

|GM |2

−4sm2M2
(

|GM |2−|GE |2
)

+
[

(

t−m2−M2
)2
+st

]

×
(

s|GM |2 − 4M2|GE |2
)

}

. (7.1)

Previously published results for polarisation observables
in the positron-electron–to–nucleon-antinucleon reaction
have been given in the case of zero lepton mass. Proposed
polarised-antiproton experiments by the PAX Collabora-
tion in the time-like region will examine the moduli and
relative phases of the form factors of the proton over a
range of energies. Knowledge of these phases will make
it possible to separate the magnetic and electric form
factors in the time-like region and thus permit significant

tests of QCD and the asymptotic domain. In the case of
mu and tau final-state pairs it will be necessary to retain
the lepton mass in the formulae for both the spin-averaged
differential cross-section and the polarisation observables
in antiproton-proton annihilation processes.
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